Short note High-spin isomers in ¹⁸³Os

T. Shizuma¹, K. Furuno¹, K. Hata¹, H. Ishiyama¹, T. Jumatsu¹, M. Kato¹, T. Komatsubara¹, K. Matsuura¹, Y. Sasaki¹, K. Uchiyama¹, T. Hayakawa²

¹ Institute of Physics and Tandem Accelerator Center, University of Tsukuba, Ibaraki 305-0006, Japan

 $^2\,$ Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1106, Japan

Received: 22 December 1997 Communicated by B. Herskind

Abstract. High-spin states in ¹⁸³Os have been studied by means of in-beam γ -ray spectroscopy. Two isomers with $I^{\pi} = (\frac{43}{2}^{-})$ and $\frac{43}{2}^{+}$ have been identified at excitation energies of $E_x = 5.068$ and 5.168 MeV. The half-lives are determined as $T_{1/2} = 27 \pm 3$ and 24 ± 2 ns.

PACS. 21.10.Tg Lifetimes – 23.20.Lv Gamma transitions and level energies – 27.70.+q $150 \le A \le 189$

In a previous study of 183 Os [1], Pedersen et al. has pointed out the existence of a $T_{1/2} \sim 30$ ns isomer with spin greater than or equal to $\frac{41}{2}\hbar$. However, no detailed decay scheme of the isomer has been reported yet. For further studies of the isomeric decay, a new spectroscopic investigation of ¹⁸³Os was carried out. High-spin states in ¹⁸³Os have been populated through the $^{170}Er(^{18}O,5n)$ reaction at a beam energy of 85 MeV. A 2.0 mg/cm^2 170 Er target enriched to 95.88% with a 10 mg/cm² lead backing was bombarded by an ¹⁸O beam derived from the 12UD tandem accelerator at University of Tsukuba. Emitted γ rays were detected by an array consisting of nine Compton-suppressed HP Ge detectors positioned at 37° (2 detectors), 79° (2), 101° (2) and 143° (3) with respect to the beam direction. In addition, one Ge detector for low energy photons was placed at an angle of 79° . A total of $2 \times 10^8 \gamma \gamma$ coincidence events were collected. A partial level scheme of ¹⁸³Os established by the present data is shown in Fig. 1. The spin assignments are mainly based on DCO ratios, γ -ray decay pattern and/or presence of both cascade and cross-over transitions. For fast $\Delta I = 2$ transitions, E2 assignments are preferably taken than M2, because M2 transition probabilities are normally quite small.

The $K^{\pi} = \frac{9}{2}^+$ ground state band (gsb) was known from previous work [2] up to the $I^{\pi} = \frac{41}{2}^+$ level. The present data extend this band to the $I^{\pi} = \frac{49}{2}^+$ level. The levels form a signature pair of rotational sequences associated with the $\frac{9}{2}^+$ [624] Nilsson configuration. The large signature splitting seen in the gsb can be attributed to differ-

Fig. 1. Proposed level scheme of ¹⁸³Os

ent band crossings for the two signature sequences, i.e. BC or AD crossings. Two levels, that decay to the $K^{\pi} = \frac{9}{2}^+$ band members, are found at $E_x = 3067$ and 3786 keV, and can be assigned $I^{\pi} = \frac{31}{2}^+$ and $\frac{33}{2}^+$. The $E_x = 3786$ keV level is populated by a 99 keV transition of which the total conversion coefficient is deduced to be $\alpha_{\rm T} = 6.0 \pm 0.7$ from the measured γ -ray intensity balance. Comparison with the calculated values [3] of $\alpha_{\rm T} = 0.4(\text{E1})$, 6.0(M1) and 4.6(E2) supports an M1 assignment for the 99 keV

Correspondence to: shizuma@tac.tsukuba.ac.jp

Fig. 2. Delayed coincidence spectra gated on the 396 **a** and 427 **b** keV γ rays, showing transitions below the isomers

transition, resulting in an $I^{\pi} = \frac{35}{2}^+$ assignment for the $E_x = 3885$ keV level. On top of this level, a new band is constructed with in-band $\Delta I = 1$ and 2 transitions. From analysis of the delayed spectra shown in Figs. 2a and 2b, two isomeric states at $E_x = 5068$ and 5168 keV are found to decay to the $K^{\pi} = \frac{35}{2}^+$ band via 351 and 451 keV transitions. Alternatively, the $E_x = 5168$ keV level has another decay branch to the $K^{\pi} = \frac{9}{2}^+$ band member by a 1079 keV transition. From the DCO ratios and/or the measured γ -ray intensity balance, the $E_x = 5068$ and 5168 keV levels are assigned $I^{\pi} = (\frac{43}{2}^-)$ and $\frac{43}{2}^+$, respectively. Assuming $K = \frac{43}{2}$ for both the isomeric levels, the 351 and 451 keV transitions change the K values by 4 \hbar , while the 1079 keV transition takes place with a much larger step of 17 \hbar in the K quantum number. Above the isomers, several γ -ray transitions are also observed.

Half-lives of the two isomers can be analysed with γ - γ time difference spectra shown in Figs. 3a and 3b. By fitting the slopes of the decay curves, the half-lives are determined as $T_{1/2} = 27 \pm 3$ ns for the $K^{\pi} = \frac{43}{2}^{-}$ isomer and $T_{1/2} = 24 \pm 2$ ns for the $K^{\pi} = \frac{43}{2}^{+}$ isomer. Hence, the hindrance factors, defined as $F = T_{1/2}^{\gamma}/T_{1/2}^{W}$ ($T_{1/2}^{\gamma}$: the partial γ -ray half-life, $T_{1/2}^{W}$: the Weisskopf estimate), are obtained to be 5.8×10^{6} and 1.1×10^{5} for the 351

Fig. 3. Time difference spectra between the 396, 407 keV transitions and the 232, 282 318, 351 keV transitions **a**, and between the 310, 427 keV transitions and the 232, 282, 318, 451 keV transitions **b**. The time difference spectrum in prompt co-incidence is also shown with *open circles* **a**

and 451 keV transitions, respectively, which are 3 times K-forbidden. The values are consistent with the systematics [4] in the region. Contrary, the measured hindrance factor of $F = 3.5 \times 10^4$ for the 1079 keV transition is extremely small in spite of the much larger inhibition. This remarkable decay would be explained by γ -softness predicted for the Os isotopes with mass number $A \approx 180$. The fluctuation of the nuclear shape along the γ deformation can introduce significant admixture of the wave functions between low-K and high-K states [5]. Thus, the γ -fluctuation would reduce the K-forbiddenness and hence facilitate such a transition as observed in the $K^{\pi} = \frac{43}{2}^+$ isomeric decay.

We would like to thank Dr. G. Sletten and J. Sørensen for preparation of the ¹⁷⁰Er target. We are also indebted to D.C. Radford for supplying the useful computer code. This work was supported by University of Tsukuba Research Projects.

References

- 1. J. Pedersen et al., Z. Phys. A321 (1985) 567
- 2. A. Neskakis et al., Nucl. Phys. A261 (1976) 189
- 3. R.S. Hager and E.C. Seltzer, Nucl. data A4 (1968) 1
- 4. K.E.G. Løbner, Phys. Lett. 26B (1968) 369
- 5. K. Narimatsu et al., Nucl. Phys. A601 (1996) 69